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Towards Practical Oblivious Join Processing
Zhao Chang, Dong Xie, Sheng Wang, Feifei Li, and Yulong Shen

Abstract—In cloud computing, remote accesses over the cloud data inevitably bring the issue of trust. Despite strong encryption
schemes, adversaries can still learn sensitive information from encrypted data by observing data access patterns. Oblivious RAMs
(ORAMs) are proposed to protect against access pattern attacks. However, directly deploying ORAM constructions in an encrypted
database brings large computational overhead. In this work, we focus on oblivious joins over a cloud database. Existing studies in the
literature are restricted to either primary-foreign key joins or binary equi-joins. Our major contribution is to support general band joins
and multiway equi-joins. For oblivious join without ORAMs, we extend the existing binary equi-join algorithm to support general band
joins obliviously. For oblivious join with ORAMs, we integrate B-tree indices into ORAMs for each input table and retrieve blocks
through the indices in join processing. The key point is to avoid retrieving tuples that make no contribution to the final join result and
bound the number of accesses to each B-tree index. The effectiveness and efficiency of our algorithms are demonstrated through
extensive evaluations over real-world datasets. Our method shows orders of magnitude speedup for oblivious multiway equi-joins in
comparison with baseline algorithms.

Index Terms—Data Privacy, Oblivious RAM, Oblivious Index, Oblivious Join.
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1 INTRODUCTION

MANY cloud service providers offer cloud-based
database systems such as Amazon RDS and Redshift,

Azure SQL, and Google Cloud SQL. Data encryption is a
necessary step for keeping sensitive information secure and
private on a cloud. To that end, encrypted databases such
as Cipherbase [1], [2], CryptDB [3], TrustedDB [4], SDB
[5], and Monomi [6], as well as related query execution
techniques [7], [8], [9], [10] have been developed. But query
access patterns still pose a privacy threat and leak sensitive
information [11], [12], [13], [14]. It is possible to analyze
the importance of different areas in the database, e.g., by
counting the frequency of accessing data items [15], [16],
[17], [18]. With background knowledge, the server may learn
a lot about user queries and/or data [11], [19], [20].

Oblivious RAMs (ORAMs) [21], [22], [23] allow the client
to access encrypted data on a server without revealing her
access patterns. However, most ORAM constructions are
still too expensive to be deployed in a large database [11].
Recent studies [14], [24], [25], [26], [27], [28] also explore
building oblivious data structures or indices over encrypted
data, but none of them support complex queries (e.g., joins).
The key point is that ORAM does not protect the number of
block accesses inherently for a general query operator. Hence,
existing solutions to integrating indices into ORAMs leak the
number of accesses to any index in processing. We will address
the security issue in our algorithms in Sections 5 and 6.

Joins are commonly used operations in relational
databases. In this work, we consider the problem of com-
puting join functions in an oblivious way. Li and Chen [29]
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Fig. 1. Strawman solution to oblivious many-to-many join.
first studies oblivious theta-joins, but their algorithms are
no better than a Cartesian product. Arasu and Kaushik [13]
presents oblivious algorithms for a rich class of database
queries including equi-joins. However, Krastnikov et al. [30]
points out that the details in [13] are incomplete, and no
practical implementation is provided to show the empirical
results. Opaque [12] and ObliDB [31] are efficient only for
the special case of one-to-many equi-join, e.g., primary-
foreign key join. Krastnikov et al. [30] proposes a novel
oblivious algorithm for general binary equi-joins. However,
it is non-trivial to extend the algorithm to join multiple
tables obliviously. A series of oblivious binary joins will
disclose the intermediate table sizes, which may leak some
sensitive information, e.g., data distribution or sparseness
of the intermediate join graph. ObliDB [31] offers an obliv-
ious hash join algorithm to support general equi-joins over
multiple tables, but it is equivalent to a Cartesian product.
Table 1 shows the comparison of oblivious join algorithms.
Example 1. Figure 1 shows that Opaque Join [12] and 0-OM
Join [31] do not work for many-to-many join, due to leaking some
sensitive information (e.g., join degree).

Given two input tables T1 and T2, they first put tuples from
both input tables into one single table T , and obliviously sort T
according to the join key. Next, they perform a linear scan over
the single sorted table T , and join each tuple originally from T1
with the corresponding tuples originally from T2.

In the original setting, they need to ensure the invariant that
after accessing every input tuple in T , they write out exactly
one real or dummy join record. But for many-to-many join, they
cannot keep the invariant above. For example, after accessing tuple
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T2(2, 1), which can match two tuples T1(2, 1) and T1(2, 2),
they must write out two join records T1(2, 1) on T2(2, 1) and
T1(2, 2) on T2(2, 1) before the next access over T , i.e., the
number of output records between two accesses over T leaks the
join degree. Processing tuples T2(2, 2) and T2(2, 3) brings the
same security issue.

In summary, prior studies are still unable to address the
major challenge in oblivious join. They are only efficient for
foreign key join [12], [31], or restricted to binary join [30], or
not leading to practical implementation [13], [29].

Our major objective is to support general band joins and
multiway equi-joins obliviously. Band join [33] is a binary
join between tables T1 and T2 on numeric attributes T1.A
and T2.B with the join condition T1.A − c1 ≤ T2.B ≤
T1.A + c2, where c1 and c2 are numeric values satisfying
c1 ≥ 0 and c2 ≥ 0. In particular, a band join will reduce
to a binary equi-join, when c1 = c2 = 0. First, we extend
the binary equi-join algorithm in Krastnikov et al. [30] to
support general band joins obliviously. Second, we propose
two band join algorithms using ORAMs: sort-merge join
and index nested-loop join. We integrate B-tree indices into
ORAMs for input tables and retrieve blocks through indices
obliviously to perform our algorithms. The key point is to
bound the number of accesses to any index. Furthermore,
we extend the index nested-loop join to support multiway
equi-joins obliviously. The key idea is to avoid retrieving
tuples that make no contribution to the final join result and
bound the total number of block accesses. Note that ORAM
can be viewed as a blackbox, providing read and write
interface, while hiding access patterns. We can introduce
some novel ORAMs (e.g., [34], [35], [36]) to improve the per-
formance. We can also leverage other types of indices (e.g.,
Oblix [26]) rather than B-tree to perform our algorithms,
as long as they can support both point and range queries
obliviously. Our major contributions are listed as follows.
• We extend the binary equi-join algorithm in Krastnikov
et al. [30] to support general band joins obliviously in
Section 4. Note that existing studies (except [29]) do not
work for any non-equi joins.
• We also propose two band join algorithms using ORAMs:

sort-merge join and index nested-loop join in Section 5.1
and 5.2. The key point is to bound the number of accesses
to each B-tree index.
• We support acyclic equi-joins over multiple tables oblivi-

ously using index nested-loop join in Section 6. We avoid
retrieving tuples that make no contribution to the final
join result and bound the total number of block accesses.
• We conduct extensive experiments on real-world datasets

in Section 9. The results demonstrate a superior perfor-
mance gain (orders of magnitude speedup for oblivious
multiway equi-joins) over baseline algorithms.

2 BACKGROUND AND RELATED WORK

2.1 Generic ORAMs and Path-ORAM
Generic ORAMs. ORAM [21], [22], [23] allows the client to
access encrypted data in the server while hiding her access
patterns. ORAM is modeled similar as a key-value store and
hides the access patterns with the same length of operations
(i.e., get() and put()) to make them computationally in-
distinguishable to the server. It consists of two components:
an ORAM data structure and an ORAM query protocol. The

client and server run the ORAM query protocol to read and
write any data to the ORAM data structure. A few advanced
ORAMs [37], [38], [39], [40], [41], [42], [43] work on file
systems, multiple clients, parallelization, asynchronicity and
distributed data stores. We may leverage them as our secure
ORAM storage, since we treat ORAM as a blackbox.
Path-ORAM. In this work, we adopt Path-ORAM [44] due
to good performance and simplicity. It organizes the ORAM
data structure as a full binary tree where each node is a
bucket with a fixed number of encrypted blocks. It main-
tains the invariant that at any time, each block b is always
placed in some bucket along the path to the leaf node that
b is mapped to. The stash stores a few blocks that have not
been written back to the binary tree in server. The position
map keeps track of the mapping between blocks and leaf
node IDs, which brings a linear space cost to the client.
To store N blocks of size B, a basic Path-ORAM requires
O(logN+N/B) client memory andO(logN) cost per query.
2.2 Oblivious Sorting and Filtering
Oblivious sorting. Items can be sorted by accessing in a
fixed, predefined order. Bitonic sort [45] needs O(N log2N)
time cost but with small constant factor. It can be extended
to an oblivious external sort with O(N log2(N/M)) time
cost using client memory sizeM [12], [31]. A few algorithms
[46], [47], [48] achieve O(N logN) time cost but may fail
with a small probability [47], or lead to large constant factors
[46] and non-trivial implementation [48]. Recently, Shi [28]
proposes an oblivious heap sort with O(N logN) time cost,
which works better in memory but is not IO-efficient.
Oblivious filtering. Dummy records can be removed by
oblivious filtering. Prior studies [12], [13], [29] and the
conference version [49] adopt an oblivious sorting to filter
out dummy records. Actually, it can be done by oblivious
compaction. OptORAMa [36] achieves this in O(N) time
but needs some non-trivial techniques. In this work, we
adopt a simple oblivious compaction algorithm [32] with
O(N logM N) time cost, where M is trusted memory size.
2.3 Oblivious Data Structure and Index
Prior studies [14], [24], [25], [26], [27], [28] build oblivious
tree structures or indices. For certain data structure whose
access pattern exhibits some predictability, they make the
structure “oblivious” to improve the performance rather
than bluntly storing blocks from the structure into ORAM.
ORAM+B-tree. B-tree indices can be introduced to speed
up the oblivious query processing [31], [50]. The client
ignores the semantic difference of (encrypted) index and data
blocks and stores them into ORAM. When answering any
query, the client starts with retrieving the root block (of
the index) from the server and then traverse down the tree.
Intuitively, the client queries the index by running the same
algorithm as that over a standardB-tree. The only difference
is that each index or data block is retrieved through ORAM.
Oblivious B-tree. Oblivious B-tree [31], [50] is designed
to avoid storing the position map in client. The main idea is
that each index node keeps block IDs and position tags of its
children nodes. When retrieving any node through ORAM,
we have acquired the position tags of its children nodes
simultaneously. Note that most query algorithms over tree
indices traverse the tree from the root to leaf nodes. As a
result, the client only needs to remember the position tag of
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TABLE 1
Comparison of oblivious join algorithms.

Join Type a

Algorithm Complexity Analysis b

BE BD ME Computation Overhead c Cloud Storage Client Storage
Li and Chen

X X X
BE A1

Ω(
∏`

j=1 |Tj |)
O(

∏`
j=1 |Tj |) O(1)

[29] BD A2 O(|Tin|+|Tout|) O(M)
ME A3 Ω(|Tin|+|Tout|) O(M)

Arasu and
Kaushik [13] X × X

BE
ME Equi-Join O((|Tin|+ |Tout|) log(|Tin|+ |Tout|)) O(|Tin|+|Tout|) O(log(|Tin| +

|Tout|))
Opaque [12] × × × PF Opaque

O((|Tin|+|Tout|) log2((|Tin|+|Tout|)/M)) O(|Tin|+|Tout|) O(M)

ObliDB [31] X × X

Join
PF 0-OM Join O((|Tin|+ |Tout|) log(|Tin|+ |Tout|)) O(|Tin|+|Tout|) O(1)
BE
ME Hash Join O(

∏`
j=1 |Tj |) O(

∏`
j=1 |Tj |) O(M)

ODBJ [30] X × × BE Binary Join O((|Tin|+ |Tout|) log(|Tin|+ |Tout|)) O(|Tin|+|Tout|) O(1)

Ours d X X X

BD
BE
BD SMJ O((|Tin|+|Tout|)·(logM (|Tin|+|Tout|)+

log |Tin|)) O(|Tin|+|Tout|) O(|Tin|/B+M
+ log |Tin|)

BE
BD

INLJ
(+Cache)

O((|T1|+ |Tout|) · (logM (|T1|+ |Tout|)+
log |T1|+ ∆ log |T2|)) O(|Tin|+|Tout|) O(|Tin|/B+M

+ log |Tin|)
ME INLJ

(+Cache)
O((|Tin|+|Tout|)·(logM (|Tin|+ |Tout|)+
log |T1|+ ∆

∑`
j=2 log |Tj |))

O(|Tin|+|Tout|) O(|Tin|/B+M
+
∑`

j=1 log |Tj |)
aWe denote binary equi-join as BE, band join as BD, acyclic multiway equi-join as ME, primary-foreign key join as PF.
bWe denote the total size of all input tables as |Tin| =

∑`
j=1 |Tj | and the real join result size as |Tout|.

cWe assume an oblivious sorting needs O(n logn) time cost [28], and an oblivious external sorting needs O(n log2(n/m)) time cost as with
Table 2 in [31] and Table 1 in [30]. We also assume an oblivious filtering needs O(n logm n) time cost, as with Theorem 6 in [32].
dWe denote sort-merge join as SMJ and index nested-loop join as INLJ. We denote the number of outsourced levels in each B-tree as ∆.

the root node, and all other position map information can
be fetched on the fly as part of the query algorithm.
Index caching. Index caching is a popular tree-based ORAM
optimization [34], [51], [52]. The client can cache one specific
level of B-tree index to speed up the query performance.
Due to large fanout in B-tree index, this overhead to the
client storage is far less than storing the entire index.

Note that the techniques above do not protect how many
accesses to the data structure. In our method, we integrate
indices into ORAMs and address the security issue in the
scenario of oblivious join, as long as the indices support
both point and range queries obliviously.
2.4 Oblivious Query Processing
Xie et al. [53] proposes ORAM solutions to shortest path
computation. ZeroTrace [52] supports oblivious get/put/in-
sert operations over set/dictionary/list interfaces. Obladi
[54] provides ACID transactions while hiding access pat-
terns. OCQ [55] performs oblivious coopetitive analytics in
a decentralized manner. Snoopy [56] designs an oblivious
storage based on oblivious load balancer and subORAMs.
Chu et al. [57] focuses on differentially oblivious join whose
problem definition is different from our work.

Note that existing solutions [12], [30], [31] rely on Trusted
Execution Environments (TEE) (e.g., Intel SGX [58], [59]).
However, TEE is orthogonal to oblivious algorithms and has
no advantage to the obliviousness.
2.5 Other Related Work
Secure multi-party computation. Secure multi-party com-
putation (MPC) allows multiple parties to perform data
analytics over their private data, while no party learns the
data from another party. Hence, MPC-based solutions [55],
[60], [61], [62], [63], [64] have a different problem setting
from our cloud database setting.
Differential privacy. Differential privacy (DP) protects a-
gainst attacks with guaranteed probabilistic accuracy. They
build index [65] and key-value data collection [66], and

TABLE 2
Notations.

D, D′ Relational database
Q, Q′ Join query

c1, c2
Non-negative parameters in band join con-
dition T1.A− c1 ≤ T2.B ≤ T1.A+ c2

N Number of real data blocks in the database
B Block size in terms of number of entries
M Number of blocks held in client memory

T1, · · · , T` ` (` ≥ 2) input tables
Tout (Rreal) Final join result table
|Tin| Total number of tuples in all input tables

|Tout| (|Rreal|) Number of real join records in Tout (Rreal)
∆ Number of outsourced levels in each B-tree

SMJ Sort-merge join
INLJ(+Cache) Index nested-loop join (with caching)

Size(D) Sizing information of the database D
Sch(D) Scheme information of the database D

IOSize(D,Q) Input/Output sizes of running Q over D
OJoin(D,Q) Oblivious join operator of runningQ over D

Trace(·) Server location accesses and network traffic
patterns in query processing

support general SQL queries [67], [68], [69]. However, DP-
based solutions [65], [66], [67], [68], [69], [70], [71], [72]
provide differential privacy for query results, while we provide
the obliviousness in query processing.

3 PROBLEM DEFINITION AND OVERVIEW
The formulation includes a client and a cloud server. The
client, who has a small and secure memory, stores her
data into the large but untrusted cloud storage. In online
processing, the client issues join queries against the server.

We follow the definition in Opaque [12] and ObliDB [31].
Let D be the relational database (where some B-tree indices
may be integrated) in the cloud and Q be a join query. Let
Size(D) be the sizing information of database D, which
includes numbers and sizes of tables, rows, columns, and
attributes in D, but does not include any attribute values.
Let Sch(D) be the schema information of database D, which
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includes table and column names in D (easily hidden using
encryption). Let IOSize(D,Q) be the input/output sizes of
running Q over D. Note that IOSize(D,Q) does not include
the sizes of all intermediate join tables for any join query Q
over multiple tables in D, which must be protected against
the adversary. Let Trace(·) be the trace of server location
accesses and network traffic patterns in query processing.
Table 2 lists the notations used in this paper.
Definition 1. Oblivious Join [12]. For any two relational
databases D and D′ and two join queries Q and Q′, where
Size(D) = Size(D′), Sch(D) = Sch(D′) and IOSize(D,Q) =
IOSize(D′, Q′), we denote the access patterns produced by the
join algorithm OJoin running Q and Q′ over D and D′ as
Trace(OJoin(D,Q)) and Trace(OJoin(D′, Q′)). OJoin is an
oblivious join algorithm, if

1) OJoin ensures the confidentiality; and
2) access patterns Trace(OJoin(D,Q)) and Trace(OJoin

(D′, Q′)) have the same length and computationally indistin-
guishable for anyone but the client.

We support two oblivious join approaches including
non-ORAM approach (see Section 4) and ORAM approach
(see Sections 5 and 6). In preprocessing stage, the client
partitions the data into blocks and encrypts these data block-
s. In particular for ORAM approach, the client builds an
ORAM data structure (e.g., Path-ORAM) over the encrypted
blocks and integrates some B-tree indices into the ORAM
data structure using ORAM+B-tree or oblivious B-tree (see
Section 2.3). Then, the client uploads the encrypted blocks
or the ORAM data structure to the cloud storage, and keeps
the encryption keys and other metadata (e.g., ORAM stash
and position map in Path-ORAM) at her side. In online
processing, the client runs the oblivious join algorithms
by performing a series of oblivious operations or ORAM
operations, which reads/writes blocks from/to the server
and generates the query results.
Segmenting ORAM. In ORAM approach, we separate one
single ORAM into multiple smaller ORAMs (denoted as
SepORAM) to reduce the cost of each ORAM access, as in
ObliDB [31]. For each input table, we build an ORAM for
data blocks and another smaller ORAM for index blocks.
The comparison in Table 1 is based on this setting. We also
consider one single ORAM setting (denoted as OneORAM)
and make the related discussion in Section 7.
Security model. We consider a “honest-but-curious” server.
Data is encrypted, retrieved, and stored in atomic units (i.e.,
blocks). All blocks are of the same size and are indistin-
guishable for the server. We use N to denote the number of
real data blocks in the database, and each encrypted block
contains B bytes. Note that the number of entries that fit in
a block is Θ(B), and the constants will vary depending on
the types of entries, e.g., encrypted index entry, encrypted
attribute value, and position tag in ORAM.

By default, we follow the security guarantee in Defini-
tion 1 in both non-ORAM approach and ORAM approach
(including both SepORAM and OneORAM settings). We
provide the security analysis and proof in Section 8.

We also introduce a padding mode to ease the volume
leakage in final output size, as in Opaque [12] and ObliDB
[31]. The join result size will be padded to an upper bound
size, which leaks nothing regarding the join query but the
upper bound size. Besides, we may introduce some novel

Algorithm 1: Join Degree Computation
Require: Input: two tables T1(j, d) and T2(j, d) with join

condition T1.j − c1 ≤ T2.j ≤ T1.j + c2.
Output: T̃1(id, j, d, pos, α) and T̃2(id, j, d, pos, α).

1: for i← 1 to 2 do
2: Ti ← OSort(Ti)〈j ↑, d ↑〉;
3: Ti(id, j, d)← Ti(id← ID, j, d); . add id column
4: end for
5: for i← 1 to 2 do
6: TR(id, j, d)← Ti(id, j − ci, d);
7: TS(id, j, d)← Ti(id, j + c3−i, d);
8: TU (id, j, d, tid)← TR ∪ TS ∪ T3−i; . add tid column
9: TU ← OSort(TU )〈j ↑, tid : TR < T3−i < TS〉;

10: TU (id, j, d, tid, pos)← Fill-Pos(TU );
11: TU ← OSort(TU )〈tid : TR < TS < T3−i, id ↑〉;
12: T̃R ← πid,j,d,pos(TU [1 . . . |Ti|]);
13: T̃S ← πid,j,d,pos(TU [|Ti|+ 1 . . . 2|Ti|]);
14: T̃i ← Ti(id, j, d, pos← T̃R.pos, α← T̃S .pos− T̃R.pos);
15: end for
16: return T̃1 and T̃2;
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Fig. 2. An example of join degree computation.
padding techniques. For example, explore differential priva-
cy rather than full obliviousness to reduce the padding size
[68], or pad the result size to the closest power of a constant
x (e.g., 2 or 4) [73], [74], [75], leading to at most logx |Rworst|
distinct result sizes, where |Rworst| is the Cartesian product
size in join scenario.

Note that our approaches do not consider privacy leak-
age through any side-channel attack (like time taken for
each operation). Prior orthogonal studies [76], [77], [78] can
help to alleviate such leakage.

4 OBLIVIOUS BAND JOIN WITHOUT ORAM
We extend the binary equi-join algorithm in Krastnikov
et al. [30] to support general band join obliviously. First,
we obliviously compute the degree information in the join
graph. Second, we obliviously make copies for each tuple
according to the join degree and perform an oblivious one-
to-one mapping operation to generate the final join output.

4.1 Join Degree Computation
Algorithm 1 shows the details of join degree computa-

tion. For each input table Ti(j, d), we denote the join key
as j and the remaining attributes as d. We mainly focus on
table T1, and the computation on T2 goes in a similar way.

First, we obliviously sort T1 and T2 lexicographically by
(j, d), and add a unique id to each tuple (Line 1-4). We pa-
rameterize oblivious sorting with a lexicographic ordering
on chosen attributes, e.g., OSort(Ti)〈j ↑, d ↑〉 sorts Ti by
increasing j attribute, followed by increasing d attributes.

Then, we aim to generate augmented tables T̃1 and T̃2
with join degree α and position pos, such that each tuple
t̃1 ∈ T̃1 matches t̃1.α tuples in T̃2, where each matched tuple
t̃2 has a unique t̃2.id ∈ (t̃1.pos, t̃1.pos+ t̃1.α] (Line 5-15).
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id j d pos α

1 1 3 0 2

2 2 2 0 3

3 2 4 0 3

4 5 3 2 1

T2

id j d pos α

1 1 2 0 3

2 3 1 0 3

3 4 3 1 3

4 8 1 4 0

T1

id j d pos

1 1 2 1

1 1 2 2

1 1 2 3

2 3 1 1

2 3 1 2

2 3 1 3

3 4 3 2

3 4 3 3

3 4 3 4

id j d pos

1 1 3 1

2 2 2 1

3 2 4 1

1 1 3 2

2 2 2 2

3 2 4 2

2 2 2 3

3 2 4 3

4 5 3 3

id j d pos

1 1 3 1

1 1 3 2

2 2 2 1

2 2 2 2

2 2 2 3

3 2 4 1

3 2 4 2

3 2 4 3

4 5 3 3

S1 S2 S2

sort expandexpand

id j d pos gid

1 1 2 0 1

1 1 2 0 2

1 1 2 0 3

2 3 1 0 1

2 3 1 0 2

2 3 1 0 3

3 4 3 1 1

3 4 3 1 2

3 4 3 1 3

S1

id j d pos gid

1 1 3 0 1

1 1 3 0 2

2 2 2 0 1

2 2 2 0 2

2 2 2 0 3

3 2 4 0 1

3 2 4 0 2

3 2 4 0 3

4 5 3 2 1

S2

Fig. 3. An example of table expansion and alignment.

Algorithm 2: Table Expansion and Alignment

Require: Input: two tables T̃1(id, j, d, pos, α) and
T̃2(id, j, d, pos, α) with band join parameters c1 and c2.
Output: join result table Tout(j1, d1, j2, d2).

1: for i← 1 to 2 do
2: Si(id, j, d, pos)← OExpand(T̃i, α);
3: Si(id, j, d, pos, gid)← Si(id, j, d, pos, gid← IDid);
4: Si(id, j, d, pos)← Si(id, j, d, pos← pos+ gid);
5: end for
6: S2 ← OSort〈pos ↑, id ↑〉(S2);
7: Tout(j1, d1, j2, d2)← (S1.j, S1.d, S2.j, S2.d);
8: return Tout;

Specifically, we generate two auxiliary tables TR and TS
for T1, where TR.j ← T1.j − c1 and TS .j ← T1.j + c2 (Line
6-7). Suppose tuple t1 ∈ T1 corresponds to tuples tR ∈ TR
and tS ∈ TS . According to the join condition, any tuple
t2 ∈ T2 with t2.j ∈ [tR.j, tS .j] will match t1 ∈ T1. Then, we
generate augmented tables T̃R and T̃S with position pos,
such that any tuple t2 ∈ T2 with t2.id ∈ (t̃R.pos, t̃S .pos]
will match t1 ∈ T1, with the help of a union TU of tables
TR, TS and T2 (Line 8-13). Finally, we generate T̃1 from T̃R
and T̃S , where the position T̃1.pos ← T̃R.pos and the join
degree α← T̃S .pos− T̃R.pos (Line 14).

Algorithm 1 takes O((|T1| + |T2|) log(|T1| + |T2|)) time
cost, when an oblivious sort needs O(n log n) time cost [28].

Example 2. An example is given in Figure 2. We mainly focus
on table T1. First, we sort T1 and T2 lexicographically by (j, d)
(Line 1-4). Then, we generate two auxiliary tables TR and TS ,
where TR.j ← T1.j − 2 and TS .j ← T1.j + 1 (Line 6-7). Note
that t1 = (3, 4, 3) ∈ T1 corresponds to (3, 2, 3) ∈ TR and
(3, 5, 3) ∈ TS . According to the join condition, (2, 2, 2), (3, 2, 4)
and (4, 5, 3) ∈ T2 with j ∈ [2, 5] are 3 matches of t1 ∈ T1.

Now, we compute a union TU of tables TR, TS and T2, and
sort TU lexicographically by (j, tid: TR<T2<TS) (Line 8-9),
e.g., (3, 2, 3, TR) < (2, 2, 2, T2) = (3, 2, 4, T2) < (1, 2, 2, TS).
Note that (2, 2, 2, T2), (3, 2, 4, T2) and (4, 5, 3, T2) are 3 match-
es of (3, 4, 3) ∈ T1, and they all rank between (3, 2, 3, TR) and
(3, 5, 3, TS) in TU . We scan TU and assign the current number
of tuples with tid = T2 to TU .pos (Fill-Pos(TU ) in Line 10).

After that, we extract T̃R and T̃S from TU by re-sorting TU
(Line 11-13). Finally, we generate T̃1 from T̃R and T̃S , where
T̃1.pos ← T̃R.pos and T̃1.α ← T̃S .pos − T̃R.pos (Line 14).
Note that t̃1 = (3, 4, 3, 1, 3) ∈ T̃1 matches t̃1.α = 3 tuples
in T̃2, (2, 2, 2, 0, 3), (3, 2, 4, 0, 3) and (4, 5, 3, 2, 1) with id ∈
(1, 4] = (t̃1.pos, t̃1.pos+ t̃1.α].

4.2 Table Expansion and Alignment
Algorithm 2 shows the details of table expansion and

alignment. After obtaining the join degree α, we need to
make copies for each tuple based on α (aka table expansion).
We obliviously expand each T̃i into table Si using Algorithm
4 in [30], where Si consists of α (contiguous) copies of each
tuple (id, j, d, pos) ∈ T̃i (Line 2). Then, we obliviously align
S2 with S1 (aka table alignment), so that each join record

T1 T2
res getNext()

j d j d

1 2 1 3 0

1 2 2 2 1

1 2 2 4 1

1 2 5 3 > 1 T1→(3, 1)

3 1 1 3 -2

3 1 2 2 -1

3 1 2 4 -1

3 1 5 3 > 1 T1→(4, 3)

4 3 1 3 < -2 T2→(2, 2)

T1 T2
res getNext()

j d j d

4 3 2 2 -2

4 3 2 4 -2

4 3 5 3 1

4 3 ⊥ > 1 T1→(8, 1)

8 1 2 2 < -2 T2→(2, 4)

8 1 2 4 < -2 T2→(5, 3)

8 1 5 3 < -2 T2→⊥

8 1 ⊥ > 1 T1→⊥

⊥ ⊥ end

j d

1 3

2 2

2 4

5 3

j d

1 2

3 1

4 3

8 1

T1 T2

Join Comparison

T1. j – 2  ≤ T2. j ≤ T1. j + 1

Fig. 4. An example of sort-merge join with ORAMs.

corresponds to a row of S1 and a row of S2 with matching
index (Line 3-6). Finally, we generate the join output table
Tout by concatenating (j, d) attributes in S1 and S2 (Line 7).

Example 3. An example is given in Figure 3. First, we oblivious-
ly expand each T̃i into table Si (Line 2). For example, for tuple t̃1
= (3, 4, 3, 1) ∈ T̃1(id, j, d, pos), we make t̃1.α= 3 copies of t̃1 to
match (2, 2, 2, 0), (3, 2, 4, 0) and (4, 5, 3, 2) in T̃2(id, j, d, pos)
with T̃2.id ∈ (t̃1.pos, t̃1.pos+t̃1.α] = (1, 4].

Then, we obliviously align S2 with S1 (Line 3-6).
1) We perform a grouping identity operation by scanning Si

(Line 3). For example, t̃1’s 3 copies (3, 4, 3, 1, 1), (3, 4, 3, 1, 2)
and (3, 4, 3, 1, 3) belong to the same group, and each gets a
different gid = 1, 2 and 3.

2) We update pos attribute as pos ← pos + gid in table
Si (Line 4). After that, t̃1’s 3 copies in S1 will be (3, 4, 3, 2),
(3, 4, 3, 3) and (3, 4, 3, 4), and t̃1’s 3 matches in S2 will be
(2, 2, 2, 3), (3, 2, 4, 3) and (4, 5, 3, 3). Now, any tuple s2 ∈ S2

matches the only one tuple s1 ∈ S1, where s1.id = s2.pos and
s1.pos = s2.id.

3) After 2), S1 has been permutated lexicographically by
(id, pos). Hence, we obliviously sort table S2 lexicographically
by (pos, id) to achieve the table alignment (Line 6).

Finally, we generate the join output table Tout by simply
concatenating (j, d) attributes in S1 and S2 (Line 7).

Algorithm 2 consists of two parts: table expansion and
table alignment. We assume an oblivious sorting need-
s O(n log n) time cost [28]. For oblivious table expan-
sion, the time cost is O((|T1| + |T2|) log(|T1| + |T2|) +
|Rreal| log |Rreal|). For oblivious table alignment, the time
cost is O(|Rreal| log |Rreal|). Hence, the total time cost is
O((|T1|+ |T2|) log(|T1|+ |T2|) + |Rreal| log |Rreal|).

5 OBLIVIOUS BAND JOIN WITH ORAM
5.1 Oblivious Sort-Merge Join

Our algorithm is similar to the traditional sort merge join
but with some differences. In preprocessing, we integrate
non-clustered B-tree indices into ORAMs for each input
table in advance, where each leaf index entry keeps a pointer
to the data tuple. Leaf index entries are sorted as per the
attribute. For each input table, we build an ORAM structure
for data blocks and another smaller one for index blocks.

In each join step, we keep the invariant that we retrieve
the tuple needed from each input table alternatively. A
dummy tuple is retrieved as necessary. It ensures the full
obliviousness, since each tuple retrieval needs the same
number of ORAM accesses for each input table. Then, we
perform a join comparison in each step. If there is a match,
we write out a join record; otherwise, we write out a dummy
record as necessary.

Algorithm 3 joins two tables T1 and T2. Whenever we
perform a getNext() over one input table (T1 or T2), we also
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Algorithm 3: Oblivious Sort-Merge Band Join
Require: Input: two tables T1(j, d) and T2(j, d) with join

condition T1.j − c1 ≤ T2.j ≤ T1.j + c2.
Output: join result table Tout.

1: Initialize Tout ← ∅.
2: Initialize t1, t2 ← ∅.
3: for i← 1 to 2 do
4: ti ← Ti.getFirst();
5: end for
6: while t1 6=⊥ or t2 6=⊥ do
7: res← t2.j − t1.j;
8: if −c1 ≤ res ≤ c2 then
9: begin← t2;

10: while −c1 ≤ res ≤ c2 do
11: Tout.put(Join(t1, t2));
12: T1.getDummy(); t2 ← T2.getNext();
13: res← t2.j − t1.j;
14: end while
15: Tout.put(⊥);
16: t2 ← begin;
17: t1 ← T1.getNext(); T2.getDummy();
18: else
19: Tout.put(⊥);
20: if res > c2 then
21: t1 ← T1.getNext(); T2.getDummy();
22: else
23: T1.getDummy(); t2 ← T2.getNext();
24: end if
25: end if
26: end while
27: Tout ← OFilter(Tout);
28: return Tout;

perform a dummy operation getDummy() over the other
table (T2 or T1) to ensure the obliviousness.

First, Algorithm 3 initializes Tout := ∅ (Line 1). Then,
we retrieve the first two tuples from T1 and T2 as t1 and t2
(Line 2-5). While either t1 or t2 is real, we compute the join
comparison result “res” between them (Line 6-7). We keep
the invariant above that we always pull tuples from T1 and
T2 alternatively for either of two possible cases:

1) t1 matches t2. First, we save the current t2 to a
temporary tuple “begin” (Line 9). We keep writing out the
join record Join(t1, t2) to Tout, and retrieving the next tuple
from T2 as t2, until the newly retrieved t2 does not match
t1 (Line 10-14). Once they do not match, we write out a
dummy record and assign “begin” back to t2 (Line 15-16).
Finally, we will retrieve the next tuple from T1 (Line 17) and
move to the next iteration (Line 6-7).

2) t1 does not match t2. Since they do not match, we first
write out a dummy record (Line 19). If res > c2, we retrieve
the next tuple from T1 (Line 20-21). Otherwise, we retrieve
the next tuple from T2 (Line 22-23). Finally, we move to the
next iteration (Line 6-7).

After both cursors reach the end of tables T1 and T2, the
final step is to obliviously filter out dummy records from
Tout (see “Oblivious filtering” in Section 2.2) and only keep
real join records (Line 27).

Example 4. An example is given in Figure 4. First, we retrieve t1
← T1(1, 2) and t2 ← T2(1, 3) from T1 and T2 (Line 2-5). Since
the join comparison result res = 0 ∈ [−c1, c2] (Line 7), we can
conclude t1 matches t2 (Line 8). Then, we assign t2 = T2(1, 3) to
“begin” (Line 9). We keep writing out Join(t1, t2) and retrieving
the succeeding tuples T2(2, 2), T2(2, 4) and T2(5, 3) from T2 as

T1 T2
match

j d j d

1 2 1 3 

1 2 2 2 

1 2 2 4 

1 2 5 3 

3 1 1 3 

3 1 2 2 

Join Comparison T1 T2
match

j d j d

3 1 2 4 

3 1 5 3 

4 3 2 2 

4 3 2 4 

4 3 5 3 

4 3 ⊥ 

8 1 ⊥ 

j d

1 3

2 2

2 4

5 3

j d

1 2

3 1

4 3

8 1

T1 T2

T1. j – 2  ≤ T2. j ≤ T1. j + 1

Fig. 5. An example of index nested-loop join with ORAMs.

t2, until t2 = T2(5, 3) does not match t1 = T1(1, 2) (Line 10-14).
Once they do not match, we write out a dummy record and assign
“begin” = T2(1, 3) back to t2 (Line 15-16). Finally, we retrieve
the next tuple T1(3, 1) from T1 (Line 17) and move to the next
iteration (Line 6-7).

Then, consider t1 ← T1(4, 3) and t2 ← T2(1, 3). Since the
join comparison result res < −c1 (Line 7), we can conclude t1
does not match t2 (Line 18). Since they do not match, we first
write out a dummy record (Line 19). If res > c2, we retrieve the
next tuple from T1 (Line 20-21). Otherwise (i.e., res < −c1 for
T1(4, 3) and T2(1, 3)), we retrieve the next tuple T2(2, 2) from
T2 (Line 22-23). Finally, we move to the next iteration (Line 6-7).

In particular, when the cursor on T1 moves to T1(4, 3) and
that on T2 reaches the end of T2, we will retrieve a dummy tuple
⊥ from T2 (Line 12) and let res = +∞ > c2 (Line 13). The rest
still goes in the same way as stated above.

After both cursors reach the end of tables T1 and T2, the final
step is to obliviously filter out dummy records from Tout (Line 27).

Theorem 1 shows that the number of join steps is a
function of the sizes of input tables and real join result,
i.e., no additional information is leaked except for the sizing
information of input and output tables.

Theorem 1. 1 For any two input tables T1 and T2 and the real
join result Rreal, let Numjs be the number of join steps from each
input table. It is a function of |T1|, |T2| and |Rreal|. We have

Numjs = f(|T1|, |T2|, |Rreal|) = |T1|+ |T2|+ |Rreal|+ 1.

Proof. We divide the process of Algorithm 3 into two parts
and compute the number of join steps in each part.
Part I: The process except for Line 10-14 in Algorithm 3.

In the first step, we invoke getFirst() once for T1 and
T2 (Line 3-4). Note that each join step leads to one join
comparison. In Part I, each join comparison leads to writing
out one dummy record. If the comparison result is res > c2,
the cursor on T1 advances (Lines 17 and 21); otherwise,
the comparison result is res < −c1, and the cursor on T2
advances (Line 23). The process above will end when both
cursors reach the end of T1 and T2. Hence, we will invoke
getNext() |T1| + |T2| times. Therefore, the total number of
join steps in Part I is |T1|+ |T2|+ 1.
Part II: The process in Line 10-14 in Algorithm 3.

Note that each join step leads to one join comparison. In
Part II, each join comparison leads to writing out one real
join record. Since the number of real join records is |Rreal|,
the number of join steps in Part II is also |Rreal|.
Based on Part I and II, Numjs = |T1|+ |T2|+ |Rreal|+ 1.

5.2 Oblivious Index Nested-Loop Join
In our index nested-loop join, we integrateB-tree indices

into ORAMs for each input table and retrieve tuples by

1. Due to space limit, proofs of theorems, complexity analyses and
implementation details of our algorithms are given in full version [79].
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Algorithm 4: Oblivious Index Nested-Loop Band Join
Require: Input: two tables T1(j, d) and T2(j, d) with join

condition T1.j − c1 ≤ T2.j ≤ T1.j + c2.
Output: join result table Tout.

1: Initialize Tout ← ∅.
2: Initialize t1, t2 ← ∅.
3: for i← 1 to |T1| do
4: t1 ← T1.getNext();
5: t2 ← T2.getFirst(t1.j − c1);
6: while t1.j − c1 ≤ t2.j ≤ t1.j + c2 do
7: Tout.put(Join(t1, t2));
8: T1.getDummy();
9: t2 ← T2.getNext();

10: end while
11: Tout.put(⊥);
12: end for
13: Tout ← OFilter(Tout);
14: return Tout;

querying the indices through ORAMs. In detail, the outer
loop is to scan table T1. While accessing each tuple in T1, the
algorithm retrieves matched tuples from table T2 through
B-tree index. In each join step, we ensure the invariant
that we retrieve the tuple needed from each input table
alternatively. A dummy tuple is retrieved from table T1 as
necessary. The difference on two tables is that we retrieve
tuples from T1 one by one according to sequential block
IDs, while for table T2 we retrieve the tuple that we need
by searching over a whole B-tree path. After each pair of
tuple retrievals, we make a join comparison of the current
two tuples. If there is a match, we write out the join record;
otherwise, a dummy record is output as necessary.

Algorithm 4 joins two tables T1 and T2. Algorithm 4
begins with initializing an empty output table Tout (Line
1). The outer loop is to iterate over each tuple in table T1
(Line 3). Each time we retrieve a new tuple t1 from T1
(Line 4), we first retrieve a tuple t2 from T2, which is the
first tuple satisfying t2.j ≥ t1.j − c1 (Line 5). If those two
tuples can match, we write the join record Join(t1, t2) to
the output table Tout (Line 7) and retrieve the next tuple
from T2 as t2 (Line 9). To ensure the obliviousness, we also
perform a dummy retrieval from T1 (Line 8). We repeat the
process above until the newly retrieved t2 does not match
the current t1. Once they do not match, we write out a
dummy record (Line 11) and step into the next iteration.
The final step is to obliviously filter out dummy records
from Tout and only keep real join records (Line 13).

Example 5. An example is given in Figure 5. When we retrieve
tuple t1 ← T1(1, 2) from T1 (Line 4), we first retrieve tuple t2
← T2(1, 3) from T2, which is the first tuple satisfying t2.j ≥
t1.j − c1 (Line 5). While t1 can match t2, we keep writing out
the join record Join(t1, t2) (Line 7) and retrieving the succeeding
tuples T2(2, 2) and T2(2, 4) from T2 as the new t2 (Line 9).
Once the newly retrieved t2 ← T2(5, 3) does not match t1 =
T1(1, 2), we step into the next iteration and process the next
tuple t1 ← T1(3, 1) from T1. In particular, once we cannot find
any tuple needed from T2, we retrieve a dummy tuple ⊥ from
T2 and logically let the matching result be false (e.g., the last
two rows in Join Comparison in Figure 5). The final step is to
obliviously filter out dummy records from Tout (Line 13).

Theorem 2. For any two input tables T1 and T2 and the real
join result Rreal, let Numjs be the number of join steps. It is a

A C
1 1
2 1
2 2
3 1

A B
1 1
2 1
2 2
2 3

Table T1 Table T2

T1 T2 T3 T4
match

A B A C B D D E

1 1
1 1 1 4 ⊥ false
⊥ 1 4 ⊥ disable

2 1 2 1 2 1 ⊥ false

2 2

2 1 2 1 1 2 true
2 1 2 3 ⊥ false
⊥ 2 3 ⊥ disable

2 2 2 1 1 2 true
2 3 2 1 ⊥ ⊥ false

padding dummy operations

D E
1 2
2 1
2 3

B D
1 4
2 1
2 3

Table T3 Table T4

Join Comparison

T1(A, B)

T3(B, D)T2(A, C)

T4(D, E)

Fig. 6. An example of oblivious multiway equi-join.

function of |T1|, |T2| and |Rreal|. Specifically, we have

Numjs = f(|T1|, |T2|, |Rreal|) = |T1|+ |Rreal|.
6 OBLIVIOUS MULTIWAY EQUI-JOIN
We extend our Algorithm 4 to support acyclic multiway equi-
joins obliviously. The key idea is to avoid retrieving tuples
that make no contribution to the final join result to bound
the total number of block accesses.
Example 6. Figure 6 shows an example of acyclic multiway equi-
join over four tables T1-T4. Due to the acyclicity, each input table
can be arranged as a node in a join tree. In this tree, for any
different tables Ti, Tj , Tk, if Tk is on the path from Ti to Tj , we
must have Attr(Ti) ∩ Attr(Tj) ⊆ Attr(Tk) for their attribute
sets. The algorithm of building a join tree is presented in [80]. We
number input tables in a pre-order traversal of the join tree. It
ensures i < j, if Ti is an ancestor table of Tj . We also denote the
parent table of Ti in the join tree as Tp(i).

In our index nested-loop join algorithm, the outer loop is to
iterate over each tuple in root table T1. Each time we retrieve
a new tuple (e.g., T1(1, 1)) from T1, we search matched tuples
(e.g., T2(1, 1), T3(1, 4), · · · ) from T2, · · · , T`. To ensure the
obliviousness, we retrieve the tuple needed from each input table
in a round-robin way and add dummy retrievals as necessary
(e.g., retrieve ⊥ from T4, due to no tuple with join key D ≥ 4 for
matching T3(1, 4), as highlighted in yellow in Figure 6). In each
step, if there is a match (e.g., in 4th and 7th join step), we output
the join record; otherwise, we output a dummy record.

To bound the total number of join steps, we make the following
observations to avoid retrieving unnecessary tuples.
Observation 1. For any non-root table Tj and its parent table
Tp(j), tuple[p(j)] in Tp(j) makes no contribution to the final join
result, if no tuple in Tj matches tuple[p(j)]. Then, tuple[p(j)]
can be safely disabled (i.e., will not be accessed in the future).

For example, for table T4 and tuple T3(1, 4) in parent table
T3, we find no tuple in T4 matches T3(1, 4) (in 1st join step).
Hence, T3(1, 4) makes no contribution to the final join result,
and can be safely disabled in an additional dummy join step (in
2nd join step). In this dummy step, we perform a dummy tuple
retrieval from each input table except T3. For T3, we perform a
tuple disabling operation, which is indistinguishable from a tuple
retrieval based on the access patterns.

When disabling any tuple, we mark its leaf entry as disabled
using an additional boolean tag. If all entries in any B-tree leaf
block have been marked as disabled, the parent entry in the B-tree
parent block will also be marked as disabled. This can recursively
go up to B-tree root block. Since the recursion goes up along a B-
tree path, we can still finish each disabling operation using some
additional B-tree path access through ORAM (i.e., adding some
dummy join step). When retrieving a new tuple from any input
table, we skip disabled entries during searching over B-tree index.
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Observation 2. For any non-root table Tj and its parent table
Tp(j), tuple[p(j)] in Tp(j) makes no contribution to the final
join result, if each tuple in Tj that matches tuple[p(j)] has been
disabled. Then, tuple[p(j)] can also be safely disabled.

For example, for table T3 and tuple T1(1, 1) in parent table T1,
T3(1, 4) is the only tuple in T3 that matches T1(1, 1). However,
since T3(1, 4) has been disabled (in 2nd join step), we know that
T1(1, 1) makes no contribution to the final join result. If the
parent tuple is in a non-root table, we will disable it by adding
some dummy join step as above. Otherwise, we do not physically
disable any tuple in root table T1, since the outer loop in our
algorithm iterates over each tuple in root table T1, and will not
access any previous tuple in T1 in the future.
Observation 3. For any non-root table Tj and its parent table
Tp(j), tuple[p(j)] in Tp(j) will have no more matches, if the cur-
rent tuple tuple[j] in Tj matches tuple[p(j)] but the succeeding
tuple in Tj has a different join key from tuple[j]’s.

Observation 3 is based on the property of equi-joins. For
example, for table T3 and tuple T1(1, 1) in parent table T1, we find
that T3(1, 4) can match T1(1, 1) (in 1st join step). But since the
succeeding tuple T3(2, 1) has a different join key from T3(1, 4),
we can conclude that T3(2, 1) does not match T1(1, 1) in equi-
join scenario. Hence, T1(1, 1) will have no more matches.

To perform this optimization, we attach another boolean tag to
each leaf entry, which indicates whether the next leaf entry in Tj
has the same key with the current entry in Tj . If not, we do not
retrieve the next tuple from the child table Tj .

After the normal join process, we pad the number of join steps
to the upper bound (e.g., the last step in Figure 6) in Theorem 3 to
ensure the obliviousness. Finally, we obliviously filter out dummy
records and only keep real join records. The last step is to go over
all index blocks and reset boolean tags in each entry.

In brief, tuple disabling operations will introduce some
additional dummy join steps, but we can still bound the
total number of join steps in Theorem 3. Besides, tuple
disabling operations also bring the overhead of resetting the
boolean tags after answering each join query. However, the
total time complexity is dominated by regular join steps and
final oblivious filtering. Hence, the time cost of resetting the
boolean tags is relatively small in oblivious join processing.

Theorem 3. For any ` (` ≥ 2) input tables T1, · · · , T` and the
real join result Rreal, let Numjs be the number of join steps. It is
a function of |T1|, · · · , |T`| and |Rreal|. Specifically, we have

Numjs = f(|T1|, · · · , |T`|, |Rreal|) = |T1|+2
∑̀
j=2

|Tj |+|Rreal|.

7 DISCUSSION ON ONE ORAM SETTING

In this work, we separate one single ORAM into multiple s-
maller ORAMs (aka SepORAM setting). Now, we reconsider
the optimization in OneORAM setting.

Since we retrieve all the tuples through one single O-
RAM, an optimization in OneORAM is to safely remove
some dummy tuple retrievals to speed up join processing.
To ensure the obliviousness, we must write out a real or
dummy join record after each tuple retrieval in OneORAM
(rather than after each join step in SepORAM). Then, we
must pay the same number of ORAM accesses between
writing out any two join records. In other words, we must
pad the number of ORAM accesses to the maximum height

of B-tree indices in OneORAM. Note that each tuple re-
trieval from any input table will be indistinguishable for
the adversary, although he knows the total number of tuple
retrievals. We can bound the total number of tuple retrievals
in OneORAM, as long as it only pertains to the input and
output sizes, and no additional information will be leaked.

However, there is a major drawback in OneORAM set-
ting. Suppose there are multiple tables in the whole dataset,
but only a few binary joins will be processed online. In this
scenario, we must put all input tables into one single ORAM
in advance, since we do not know the online workload.
Hence, we have to pay much larger cost for accessing the
large single ORAM rather than smaller separate ORAMs.

8 SECURITY ANALYSIS

We formalize our security guarantee in Theorem 4 with the
same notations in Definition 1. As with Opaque [12] and
ObliDB [31], our security is guaranteed by the existence of
simulator SIM such that for any probabilistic polynomial-
time (PPT) adversary A, A cannot distinguish between the
real server location trace from our method and the simulat-
ed trace from simulator SIM. Since SIM only sees what we
want to leak, A cannot learn any additional information. A
brief description on specifics of simulated traces from SIM
is given in the proof of Theorem 4.

In our setting, SIM only has the access to the schema
and sizing information of input and output tables, the
oblivious join operator, and some specific public constants
(e.g., the number of outsourced levels in each B-tree index,
denoted as ∆). Note that SIM has no access to the sizes of
all intermediate join tables, since we protect this sensitive
information against the adversary.
Theorem 4. For any relational database D, schema Sch(D), join
query Q, oblivious join algorithm OJoin, and security parameter
λ, there is a polynomial-time simulator SIM such that for any
PPT adversary A,

|Pr[A(SIM(Size(D),Sch(D), IOSize(D,Q),

OJoin(D,Q)))⇒ 1]

−Pr[A(Trace(OJoin(D,Q)))⇒ 1]| ≤ negl(λ).

Proof. (Informal Sketch) In this proof, we show the existence
of simulator SIM, and argue that access pattern of SIM is
distributed indistinguishable from Trace(OJoin(D,Q)) (gen-
erated from algorithm OJoin(D,Q)). SIM reads algorithm
OJoin(D,Q) to determine which operations to simulate.
For Oblivious Join without ORAMs:

The security proof is similar to that of Krastnikov et al.
[30] and Arasu and Kaushik [13]. First, the process of our
join algorithm OJoin(D,Q) guarantees that each intermedi-
ate table size only pertains to the input and output sizes
IOSize(D,Q). Then, we consider how SIM simulates the
access patterns for the operations in OJoin(D,Q) as follows.
• Oblivious Sorting and Linear Scan: These two operations

access the blocks in a fixed, predefined order. Hence,
SIM can simulate the access patterns, given the access to
Sch(D), Size(D) and IOSize(D,Q).
• Table Augmentation: For each iteration in Table Augmen-

tation, we read an input tuple, compute and add derived
attributes, and write out the output tuple. As with linear
scan, SIM can simulate the access patterns, given Sch(D),
Size(D) and IOSize(D,Q).
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• Union of Tables: For each iteration in Union of Tables, we
read a tuple from one input table and write it out to the
output table. As with linear scan, SIM can simulate the
access patterns, given Sch(D), Size(D) and IOSize(D,Q).
• Filling Position: Filling Position (Fill-Pos(·) in Algorithm

1) operation scans the input tuples while maintaining a
counter in private client. The counter will be incremented
once we meet specific tuples. For each input tuple, we
assign the counter to a new attribute pos and write out
the updated tuple. Hence, the access pattern simulation
can be reduced to Table Augmentation.
• Table Expansion: We adopt Algorithm 4 in [30] to support

Table Expansion operation. SIM can simulate the access
patterns as in [30].
• Table Alignment: Table Alignment sorts and scans the ex-

panded tables. For each iteration in the scan, we read two
input tuples, concatenate their (j, d) attributes and write
out one join record. Hence, the access pattern simulation
can be reduced to Oblivious Sorting, Linear Scan, and
Table Augmentation.

For Oblivious Join with ORAMs:
SIM needs to simulate access patterns for ORAM op-

erations and oblivious filter operations (including oblivious
compaction/sorting, and a few linear scans) in OJoin(D,Q).

This proof is covered by Arguments 1-4. We mainly
focus on separate ORAMs setting (denoted as SepORAM)
in Arguments 1-3. For one ORAM setting (denoted as One-
ORAM), the proof relies on Argument 4: OneORAM does
not introduce any more privacy leakage than SepORAM.
Argument 1. We ensure the obliviousness in each join step.

First, we argue that SIM can simulate each ORAM or
oblivious filtering operation. Since SIM has the access to
schema Sch(D) and sizing information Size(D), the access
pattern simulation for each of such operations is the same
as that in the original ORAM scheme, or that for original
oblivious compaction/sorting and linear scan operations.

Then, we argue that SIM can simulate each join step. In
SepORAM, we keep the invariant that we always retrieve
the tuples needed from each input table in a round-robin
way in each join step. Even if we do not need to retrieve
any new tuple, we still retrieve a dummy tuple to ensure
the obliviousness. At the end of each join step, if there is
a match, we write out a join record to the output table;
otherwise, we write out a dummy record as necessary.
Specifically, each tuple retrieval for any input table leads to
the same number of ORAM accesses, which only pertains to
the height of the outsourced B-tree index. In each join step,
since SIM has the access to specific public constants (e.g.,
the number of outsourced levels in each B-tree index), SIM
can perform the corresponding number of ORAM operation
simulations for each input table in a round-robin way and
output a (randomized encrypted) join record.
Argument 2. We ensure the number of join steps only pertains
to the input and output sizes.

In SepORAM, Theorems 1-3 guarantee that the number
of join steps in algorithm OJoin(D,Q) only pertains to the
input and output sizes IOSize(D,Q). Since SIM has the
access to IOSize(D,Q), SIM will know the number of join
steps based on IOSize(D,Q), and perform the correspond-
ing number of join step simulations.

Argument 3. Arguments 1 and 2 ensure the simulated access
pattern is indistinguishable from Trace(OJoin(D,Q)) in the
whole process (i.e., the obliviousness in SepORAM).

Argument 4. OneORAM does not introduce any more privacy
leakage than SepORAM.

For each step in OneORAM, algorithm OJoin(D,Q) re-
trieves the tuple needed from an input table through the
single ORAM, and pads the number of ORAM accesses
to the maximum length of all retrieved B-tree paths. It
ensures that each tuple retrieval from any input table will be
indistinguishable for the adversary. Note that OJoin(D,Q)
may remove some dummy tuple retrievals, as long as total
number of tuple retrievals only pertains to the input and
output sizes IOSize(D,Q). Then, after each tuple retrieval in
OneORAM (rather than after each join step in SepORAM),
we ensure to write out a real or dummy join record to the
output table, to protect the join degree information and
ensure the full obliviousness. The simulation is similar to
that in SepORAM, since SIM still has the access to the
background knowledge.

Theorem 4 guarantees our security in the sense of Defi-
nition 1. For binary joins, our security guarantee is the same
as Krastnikov et al. [30] and oblivious mode in Opaque [12]
and ObliDB [31]. For multiway joins, our security guarantee
is the same as Arasu and Kaushik [13].

The simulator SIM’ for padded mode behaves anal-
ogously to SIM. In padded mode, the security theorem
replaces the final join output size with an upper bound size
as a public parameter in simulator SIM, which indicates the
padded output size.

9 EXPERIMENTAL RESULTS

9.1 Experimental Setup and Datasets
We make the evaluation for ObliDB [31], ODBJ [30] and
our ORAM approach. For ODBJ, we extend its implemen-
tation [81] to support general band joins. We adopt two
oblivious sorting algorithms including oblivious external
bitonic sorting [45] (denoted as ODBJ (Bitonic)) and obliv-
ious heap sorting [28] (denoted as ODBJ (Heap)). For our
ORAM approach, we have two settings: SepORAM and
OneORAM. Each setting includes three algorithms: SMJ,
INLJ and INLJ+Cache (see Table 1). In “+Cache” mode, the
client caches all index blocks above the leaf level, i.e., ∆ = 1
(see Table 2).

We also compare our method with an insecure baseline
(Raw Index(+Cache)). It builds B-tree indices over data
blocks and stores them in the cloud without encryption.
Setup. The client is an Ubuntu 18.04 machine with 18 GB
memory. The server is an Ubuntu 18.04 machine with 256
GB memory and 2 TB hard disk. The bandwidth is 1 Gbps.
Default parameter values. We set block size B = 4 KB, as in
[11], [39], [53]. We set trusted memory size M = 2B (B is
block size) in ODBJ and our method, but set M = 50 logN
in ObliDB to make it finish in a reasonable period.

We evaluate the methods on the following two datasets.
TPC-H. We set default data size to 100 MB and vary data
sizes from 10 MB to 1 GB in TPC-H benchmark. Query TE1-
TE3 and Query TM1-TM3 come from the conference version
[49]. Appendix A shows Query TB1-TB2 in SQL.
• Query TE1-TE3: general equi-joins over 2 tables.
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Fig. 7. Storage cost against raw data size on TPC-H.
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(b) Client memory size.
Fig. 8. Storage cost against raw data size on social graph.
• Query TB1-TB2: general band joins over 2 tables.
• Query TM1-TM3: general multiway joins over 3-5 tables.
Social graph. Social graph [82], [83] contains twitter friend-
ship links. We set default user number to 20,000 (with raw
data size 4.5 MB) and vary user numbers from 5,000 to
200,000 (with raw data size from 1.3 MB to 58 MB). The
following queries come from the conference version [49].
• Query SE1-SE3: general equi-joins over 2 tables.
• Query SM1-SM3: general multiway joins over 3-4 tables.
Remarks. The query cost for each method should be roughly
proportional to the communication cost. It is confirmed by
our experimental results (see Figures 9-16). For simplicity,
we mainly focus on experimental results for query cost.
9.2 Cloud and Client Storage Costs
Figures 7a and 8a show cloud storage cost on two datasets.
ObliDB and ODBJ achieve the minimum cloud storage
cost, since they only store encrypted data blocks. Raw In-
dex(+Cache) needs a little more cost for storing index blocks.
ORAM based method has roughly 10X larger cost than Raw
Index(+Cache), due to building ORAM data structure.

Figures 7b and 8b show client memory size on two
datasets. ODBJ achieves the minimum cost, since the client
always keeps a constant number of blocks. For Raw In-
dex(+Cache), the client also keeps a few more blocks along
retrieved B-tree paths and may cache some index blocks.
For ObliDB, we set trusted memory size M = 50 logN and
make it finish as soon as possible. For ORAM based method,
the client memory cost grows (roughly) linearly with raw
data size, due to O(N/B) blocks in the position map.
9.3 Performance of Binary Equi-Join
9.3.1 Default Setting
Figures 9a and 10a show query cost for binary equi-join in
default setting. Our SepORAM(+Cache) achieves 2X-3X and
50X-3000X better performances than ObliDB on TPC-H and
social graph, since our query cost depends on input and
output sizes linearly. The speedup difference is mainly due
to the join result size, which grows with square of input size
on TPC-H but is comparable with input size on social graph.

Our SepORAM(+Cache) brings 90X-450X larger query
cost than Raw Index(+Cache) except for Query SE1, and also
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Fig. 9. Performance of binary equi-join on TPC-H.
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Fig. 10. Performance of binary equi-join on social graph.
brings 7X-15X and 40X-160X larger query cost on TPC-H
and social graph than ODBJ (Bitonic) except for Query SE1.
The major reason is that data tuple size is much less than
block size. For index based methods (Raw Index(+Cache)
and ours), only one index entry or data tuple in each
retrieved block contributes to the join processing. For ODBJ
method, ODBJ (Heap) brings 4X-9X and 25X-37X larger
query cost on TPC-H and social graph than ODBJ (Bitonic),
since oblivious heap sort [28] works better in memory but
does not achieve good IO performance. In contrast, oblivi-
ous external bitonic sort [45] is more IO-efficient. Note that
data tuple size is much less than block size on both datasets,
even if the trusted memory contains only two blocks, the
trusted memory actually holds decades of tuples.

In particular, Query SE1 joins a small table with a
large one but generates few join records. Sep SMJ and Sep
INLJ(+Cache) bring 2400X and 30X larger cost than Raw
Index(+Cache) algorithms. Sep INLJ(+Cache) even achieves
1.7X-2.7X better performance than ODBJ (Bitonic). The rea-
son is that query cost of Sep INLJ(+Cache) increases with
large table size logarithmically, while that of Sep SMJ and
ODBJ increases with large table size linearly (see Table 1).

For our ORAM based method, Sep INLJ achieves 1.2X-
2.6X better performance than One INLJ. As explained in
Section 7, One INLJ(+Cache) has to pad the number of
ORAM accesses for each tuple retrieval to the maximum
length of outsourced B-tree paths, although this problem
can be alleviated by index caching. One SMJ does not need
padding, since the client always accesses an index block and
then a data block for each tuple retrieval through ORAM.
One SMJ even achieves 1.6X better performance than Sep
SMJ on Query SE2 and SE3, due to less number of tuple
retrievals based on the optimization in Section 7. Last, the
index caching brings 1.2X-1.6X speedup ratio.

9.3.2 Scalability
Figures 11a and 12a show query cost for Query TE2 and SE2
against raw data size. Our SepORAM(+Cache) achieves 2X-
4X and 1600X-16000X better performances than ObliDB for
Query TE2 and SE2, when raw data size increases from the
minimum to the maximum. The speedup difference for two
queries is still on account of the join result size, as explained
in Section 9.3.1. Compared with Raw Index(+Cache), Se-
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Fig. 11. Performance of Query TE2 against raw data size.
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Fig. 12. Performance of Query SE2 against raw data size.
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Fig. 13. Performance of band join on TPC-H.
pORAM(+Cache) brings 75X-157X and 161X-409X larger
query cost on Query TE2 and SE2. Compared with ODBJ
(Bitonic), SepORAM(+Cache) brings 10X-20X and 30X-140X
larger query cost on Query TE2 and SE2. The major reason
is still that data tuple size is much less than the block size, as
explained in Section 9.3.1. For ODBJ method, ODBJ (Heap)
brings 5X-15X and 16X-37X larger query cost on Query TE2
and SE2 than ODBJ (Bitonic), since oblivious heap sort [28]
is suitable in memory but not IO-efficient. For our method,
Sep INLJ achieves 1.1X-3.4X better performance than One
INLJ, as explained in Section 9.3.1. As in Section 9.3.1, One
SMJ achieves 1.4X-1.7X better performance than Sep SMJ on
Query SE2 due to less number of tuple retrievals. Last, the
index caching brings 1.2X-2.0X speedup ratio.

9.4 Performance of Band Join
Figure 13a shows query cost for band join on TPC-H in
default setting. Compared with Raw INLJ(+Cache), our
extended ODBJ (Bitonic) brings 30X and 58X larger query
cost on Query TB1 and TB2, and Sep INLJ(+Cache) brings
164X and 288X larger query cost on Query TB1 and TB2.
For extended ODBJ method, ODBJ (Heap) brings 9X and 5X
larger query cost on Query TB1 and TB2 than ODBJ (Biton-
ic), as explained in Section 9.3. For ORAM based method,
Sep INLJ achieves 1.4X-2.5X better performance than One
INLJ, as explained in Section 9.3. The index caching brings
1.2X-1.5X better performance. Figure 14a shows query cost
on Query TB1 against raw data size. When raw data size
varies from 20 MB to 1 GB, our extended ODBJ (Bitonic)
and Sep INLJ(+Cache) bring 15X-66X and 73X-264X larger
query cost on Query TB1 compared with Raw INLJ(+Cache).
For extended ODBJ method, ODBJ (Heap) brings 5X-15X
larger query cost on Query TB1 than ODBJ (Bitonic). For
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Fig. 14. Performance of Query TB1 against raw data size.

TM1 TM2 TM3
Query

10
1

10
5

10
9

10
13

10
17

10
21

10
25

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

TM1 TM2 TM3
Query

10
2

10
6

10
10

10
14

10
18

10
22

10
26

C
om

m
un

ic
at

io
n 

C
os

t (
M

B) ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Fig. 15. Performance of multiway equi-join on TPC-H.
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Fig. 16. Performance of multiway equi-join on social graph.
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Fig. 17. Padded vs. non-padded mode (binary equi-join).
ORAM based method, Sep INLJ achieves 1.9X-2.9X better
performance than One INLJ, and index caching achieves
1.2X-1.5X better performance.
9.5 Performance of Multiway Equi-Join
9.5.1 Default Setting
Figures 15a and 16a show query cost for multiway equi-join
on two datasets in default setting. Our Sep INLJ(+Cache)
achieves 106X-1011X better performance than ObliDB on all
queries except Query TM2. The reason is that our query cost
is roughly linear with input and output sizes, but ObliDB
has to perform a Cartesian product. For Query TM2, the
speedup ratio goes down to 280X, since the join result size is
roughly proportional to Cartesian product size. Compared
with Raw INLJ(+Cache), Sep INLJ(+Cache) brings 185X-
985X and 37000X-70000X larger query cost on TPC-H and
social graph, due to ensuring the obliviousness. For our
method, Sep INLJ achieves 1.6X-5.5X better performance
than One INLJ, since One INLJ has to access the large single
ORAM. Last, index caching brings 1.1X-1.5X speedup ratio.

9.6 Padded Mode vs. Non-Padded Mode
We also make the comparison between padded mode and
non-padded mode for all secured methods. We discuss
three padding strategies for join result size: (1) no padding
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Fig. 18. Padded vs. non-padded mode (band join).
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Fig. 19. Padded vs. non-padded mode (multiway equi-join).
(denoted as Real Size); (2) padding to closest power of 2
(denoted as Closest Power) [73], [74], [75]; (3) padding to
Cartesian product (denoted as Cartesian Product).

Figures 17-19 show query cost against different padding
strategies in default setting. For ObliDB, Cartesian Product
even achieves 5X less query cost than Real Size and Closest
Power, since Real Size and Closest Power need an addi-
tional oblivious filtering over the join output with Cartesian
product size. For ODBJ and ORAM based method, query
cost is roughly proportional to different ratios of padded
join sizes to real join sizes, e.g., Closest Power introduces
within 2X larger query cost than Real Size, due to padding
to closest power of 2. In Cartesian Product, ODBJ (Bitonic)
needs 40X-50X larger query cost than ObliDB, and ORAM
based method brings 500X-1700X and 900X-5300X larger
query cost on binary and multiway equi-joins than ObliDB.
The first reason is that ODBJ and ORAM based method
incur Ω(logN) bandwidth overhead to ensure the oblivi-
ousness. The second reason is that we set trusted memory
size M = 50 logN in ObliDB. In Cartesian Product, ODBJ
(Heap) even achieves 2X and 4X better performance on
Query TE2 and SE2 than ODBJ (Bitonic), since oblivious
heap sort [28] achieves lower time complexity than external
bitonic sort (O(N logN) vs. O(N log2(N/M))), especially
when the join output size is huge.

9.7 Access Pattern Logs
For security analysis, we verify the obliviousness of our
method by comparing the logs of access patterns for dif-
ferent inputs, as with “Experiments: Memory Access Logs”
paragraph in Section 6.1 in [30]. We also visualize the access
patterns in Figures 20 and 21, as with Figure 7 in [30]. Figure
20 shows the access pattern of our extended oblivious band
join algorithm in ODBJ (Bitonic). It joins T1 and T2 of size
4 into Tout of size 9, as with Examples 2 and 3. Specifically,
horizontal axis means the discretized time, and vertical axis
means the tuple index. Each light bar means a tuple read,
and each dark bar means a tuple write. Figure 21 shows
the access pattern of oblivious multiway equi-join algorithm
(without index caching). It joins 4 tables with |T1| = |T2| = 4
and |T3| = |T4| = 3 into Tout of size 2, as with Example 6.
EachB-tree index for T1-T4 has 3 levels: root node level, leaf

entry level, and data tuple level. Specifically, horizontal axis
means the discretized time. For T1-T4, vertical axis means
the index level in B-tree for T1-T4; each light bar means
an ORAM read, and each dark bar means an ORAM write.
For Tout, vertical axis means the record index; each light
bar means a record read, and each dark bar means a record
write. We have verified that given the specific input and
output sizes ranging from 10 to 10,000, the tests for different
input tuples produce the same logs of access patterns.

10 CONCLUSION

This work supports general band joins and multiway equi-
joins obliviously based on non-ORAM approach [30] and
ORAM approach [49]. Non-ORAM approach stores input
tables in flat storage and achieves better performance in
join processing, but needs some delicate design of oblivious
operations. ORAM approach builds oblivious indices over
input tables directly, but usually brings larger computation
overhead in join processing. As with ObliDB [31], accessing
a few rows in any table should use the indexed storage,
while the flat storage performs better for accessing large
segments. Hence, to design the query optimizer for differ-
ent approaches is a crucial point in building encrypted or
oblivious databases. Note that our current design does not
address challenges associated with ad-hoc updates, which is
a future direction. Last, how to support query concurrency
in an efficient manner using ORAM is still a major challenge.

APPENDIX A
Query TB1: Suppliers joined with other suppliers with the
difference of account balances within [−100.00, 1000.00].

SELECT s1.s_suppkey, s2.s_suppkey,
s1.s_acctbal, s2.s_acctbal

FROM supplier s1, supplier s2
WHERE s1.s_acctbal−100.00 ≤ s2.s_acctbal

AND s2.s_acctbal ≤ s1.s_acctbal+1000.00;

Query TB2: Parts joined with other parts with the difference
of retail prices within [−50.00, 40.00].

SELECT p1.p_partkey, p2.p_partkey,
p1.p_retailprice, p2.p_retailprice

FROM part p1, part p2
WHERE p1.p_retailprice−50.00 ≤ p2.p_retailprice
AND p2.p_retailprice ≤ p1.p_retailprice+40.00;
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